Consensus Labeled Random Finite Set Filtering for Distributed Multi-Object Tracking

نویسندگان

  • Claudio Fantacci
  • Ba-Ngu Vo
  • Ba-Tuong Vo
  • Giorgio Battistelli
  • Luigi Chisci
چکیده

This paper addresses distributed multi-object tracking over a network of heterogeneous and geographically dispersed nodes with sensing, communication and processing capabilities. The main contribution is an approach to distributed multi-object estimation based on labeled Random Finite Sets (RFSs) and dynamic Bayesian inference, which enables the development of two novel consensus tracking filters, namely a Consensus Marginalized δ-Generalized Labeled Multi-Bernoulli and Consensus Labeled MultiBernoulli tracking filter. The proposed algorithms provide fully distributed, scalable and computationally efficient solutions for multi-object tracking. Simulation experiments via Gaussian mixture implementations confirm the effectiveness of the proposed approach on challenging scenarios.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online Visual Multi-Object Tracking via Labeled Random Finite Set Filtering

This paper proposes an online visual multi-object tracking algorithm using a top-down Bayesian formulation that seamlessly integrates state estimation, track management, clutter rejection, occlusion and mis-detection handling into a single recursion. This is achieved by modeling the multi-object state as labeled random finite set and using the Bayes recursion to propagate the multi-object filte...

متن کامل

Labeled Random Finite Sets in Multi-target Track-Before-Detect

In this paper we address the problem of tracking multiple targets based on raw measurements by means of Particle filtering. Bayesian multitarget tracking, in the Random Finite Set framework, propagates the multitarget posterior density recursively in time. Sequential Monte Carlo (SMC) approximations of the optimal filter are computationally expensive and lead to high-variance estimates as the n...

متن کامل

A Random Finite Set Approach to Space Junk Tracking and Identification

The report summarizes the feasibility study performed for AFRL/AOARD regarding the use of Random Finite Set (RFS) filtering approach for tracking orbital space debris. Specifically, we investigate the capability of the RFS approach to accommodate: nonlinear motion and measurement models; unknown and time varying target number; and limited sensor field-of-view. This report shows the capability o...

متن کامل

Adaptive Neural Network Method for Consensus Tracking of High-Order Mimo Nonlinear Multi-Agent Systems

This paper is concerned with the consensus tracking problem of high order MIMO nonlinear multi-agent systems. The agents must follow a leader node in presence of unknown dynamics and uncertain external disturbances. The communication network topology of agents is assumed to be a fixed undirected graph. A distributed adaptive control method is proposed to solve the consensus problem utilizing re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1501.01579  شماره 

صفحات  -

تاریخ انتشار 2015